
Progressive Glimmer:
Expanding Dimensionality in Multidimensional Scaling

Marina Evers*

University of Stuttgart
David Hägele†
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Figure 1: Progressive Glimmer supports updating the number of dimensions iteratively and performing consistent updates in the
embedding. In this example, the algorithm is applied to the Iris dataset.

ABSTRACT

Progressive dimensionality reduction algorithms allow for visually
investigating intermediate results, especially for large data sets.
While different algorithms exist that progressively increase the
number of data points, we propose an algorithm that allows for in-
creasing the number of dimensions. Especially in spatio-temporal
data, where each spatial location can be seen as one data point and
each time step as one dimension, the data is often stored in a for-
mat that supports quick access to the individual dimensions of all
points. Therefore, we propose Progressive Glimmer, a progressive
multidimensional scaling (MDS) algorithm. We adapt the Glim-
mer algorithm to support progressive updates for changes in the
data’s dimensionality. We evaluate Progressive Glimmer’s embed-
ding quality and runtime. We observe that the algorithm provides
more stable results, leading to visually consistent results for pro-
gressive rendering and making the approach applicable to streaming
data. We show the applicability of our approach to spatio-temporal
simulation ensemble data where we add the individual ensemble
members progressively.

Index Terms: Multi-dimensional scaling, progressive visualiza-
tion.

1 INTRODUCTION

In this paper, we present a progressive version of the Glimmer al-
gorithm [8], which is a dimensionality reduction (DR) method per-
forming multidimensional scaling (MDS). Many DR methods, es-
pecially metric MDS, are prone to long runtimes. Numerous ap-

*e-mail: marina.evers@visus.uni-stuttgart.de
†e-mail: david.haegele@visus.uni-stuttgart.de
‡e-mail: st142532@stud.uni-stuttgart.de
§e-mail: daniel.weiskopf@visus.uni-stuttgart.de

proaches to improve efficiency have been proposed using hierar-
chies [16], interpolation [5], or multilevel processing as leveraged
by Glimmer. While these optimizations considerably reduce run-
times, the computations still take seconds to minutes, slowing down
the analysis workflow as users need to wait for the computations to
finish. Progressive visual analytics [13] recommends using progres-
sive methods that avoid disrupting the analysis process by providing
intermediate results throughout the computation process.

Methods that iteratively refine their results, e.g., those leveraging
gradient descent, naturally provide intermediate results after each
iteration. However, to perform those methods, all of the data has
to be fully available. In contrast, our progressive Glimmer allows
for adding new data dimensions and updating the embedding ef-
ficiently without recomputation and, thus, supporting data chunk-
ing [15]. The algorithm can start on partially available data, e.g.,
when dimensions of the data set are located at different sources and
introduce latency due to loading and preprocessing. It is also possi-
ble to limit the computation time for creating intermediate results.
Progressive Glimmer is also applicable in the related and often con-
fused streaming setting, where new data continuously arrives.

Our contributions can be summarized as:
• An algorithm for progressively applying the Glimmer MDS

algorithms on data with an increasing number of dimensions.
• An evaluation of the algorithm’s performance and comparing

the embedding quality to the non-progressive version.
• The application of Progressive Glimmer to a real-world

dataset from the domain of climate science.

2 RELATED WORK

Former works related to ours comprise special MDS techniques,
DR methods for streaming data, and progressive DR methods. For
an introduction to MDS and historical overview, we point the reader
to the survey of Saeed et al. [12]. Brandes and Pich [3] pro-
posed a progressive version of classical MDS inspired by landmark
MDS [5], where a rough approximation of the final embedding is
achieved with a small number of pivot points, which is then pro-



gressively increased. Our algorithm, in contrast, is a metric MDS
technique that supports progressive refinement through incremen-
tal extension of the set of data dimensions. This ability is different
from out-of-sample extensions [2, 14] that allow the insertion of
new data points of the same dimensionality into an existing embed-
ding. Another progressive DR method by Pezotti et al. [11] enables
t-SNE to be employed in progressive visual analytics and refine-
ment is steerable by specifying areas of interest where approxima-
tions are swapped for exact computations. Glimmer approximates
close and distant relationships between data points throughout the
minimization process. While not being steerable, the approxima-
tions improve on each iteration.

DR methods for streaming applications provide embeddings for
subsets of the data that are extended or updated upon newly ar-
riving data. STREAMIT [1] is a visual analytics approach using
metric MDS for text document visualization with a continuously
running force simulation that allows inserting new documents. It
also allows interactively adapting the similarity measure between
documents, resulting in a layout update. Our approach uses a sim-
ilar idea where introducing new dimensions implies a change in
high-dimensional point distances, resulting in a progressive refine-
ment of the inter-point similarity. Apart from progressive visualiza-
tion, our approach creates consistent visualization while progress-
ing. The mechanic proposed in temporal MDS [9] to select a subset
of dimensions per time-step over a sliding window can also be ap-
plied in our case. While temporal MDS uses one-dimensional em-
beddings and a heuristic for flipping mirrored subsequent results,
our method can provide temporally coherent n-dimensional embed-
dings by updating previous results.

3 ALGORITHM

We extend the Glimmer algorithm by Ingram et al. [8] to enable up-
dates to the data’s dimensionality. First, we recapitulate the original
algorithm and then introduce our adaptation.

The original Glimmer algorithm uses a multilevel process. It
starts by creating a layout with a small subset of points, then uses
the layout as the basis for a larger subset on the next level until
reaching the top level, which consists of all points. Instead of using
the full information of inter-point distances to determine the layout,
a force-based approximation is used as proposed by Chalmers [4].
In each iteration of this algorithm, every point has a fixed-size set
of random points to which the distances are considered. This set of
points is used to approximate the stress and compute the gradients
for optimization. It is updated by swapping half of the points for
different ones but retaining the closest ones. By repeating this pro-
cess in each iteration, the point sets converge to consist of the near-
est neighbors (near sets) and constantly changing other points (far
sets). Due to the small number of inter-point distances that are com-
puted in each iteration, a tremendous speedup is achieved compared
to the exact MDS computation. However, testing for convergence
is difficult since the stress is no longer steadily decreasing and is
subject to noise. Therefore, the stress values of the last m iterations
are used to smooth the stress using a windowed-sinc filter.

For a progressive version of the Glimmer algorithm, we subse-
quently add individual dimensions as shown in Figure 1. Progress-
ing in the direction of dimensions instead of in the dimension of
points is strongly motivated by investigating spatio-temporal data
with dimensionality reductions, even though it is generally appli-
cable to other data types. If dimensionality reduction should be
applied to spatio-temporal data such as simulation data, the data
is commonly stored as individual time steps. However, loading
and processing entire datasets at once is often time-consuming. To
avoid preprocessing the entire dataset, we aim for a progressive al-
gorithm that directly makes use of the existing data structures and
provides intermediate results based on a subset of time steps. Al-

Algorithm 1 Progressive Glimmer
1: X ← data[dim1 . . . dimℓ]
2: Y ← data[dim1,dim2]
3: N ← random set of k neighbors for each x ∈ X
4: CHALMERS–MDS(X ,Y,N )
5: extend X with more dimensions, repeat previous step
6: procedure CHALMERS-MDS(X ,Y,N )
7: δ ← initial forces set to 0
8: s = [ ]
9: while has not converged do

10: LAYOUT(X ,Y,N ,δ )
11: append current stress to s
12: N ′← random set of k/2 neighbors for each x ∈ X
13: N ← keep close neighbors, replace others by N ′

14: end while
15: end procedure
16: procedure LAYOUT(X ,Y,N ,δ )
17: stress← 0
18: for i ∈ {1 . . . len(X)} do
19: neighbors←Ni
20: Di← distances between X[i] and X[neighbors]
21: di← distances between Y [i] and Y [neighbors]
22: stress← stress +∥Di−di∥
23: δi← update force with MDS gradient from Di and di
24: end for
25: Y ← Y +δ

26: end procedure

gorithm 1 shows the pseudo-code of our algorithm.
Progressive Glimmer strongly builds on the results created with

fewer dimensions. Most importantly, it uses the configuration of the
previous step as an initial condition. By assuming relatively small
changes when adding additional dimensions, using the hierarchical
multi-level approach for finding a good initial embedding is unnec-
essary. Therefore, the Chalmers-MDS procedure of Algorithm 1 is
executed on all data points once instead of repeatedly on several hi-
erarchy levels. Additionally, we assume that the nearest neighbors
are reasonably well approximated which is why we use the neigh-
bors (N in Algorithm 1) of the previous computation as a starting
point for the new computation. Of course, the nearest neighbors are
updated during the iterative optimization. For the first progression
step, an initial condition is required. Depending on the use case, we
propose to either use two dimensions as a starting point or apply the
original Glimmer algorithm to a selected subset of the data.

The original Glimmer algorithm uses a windowed-sinc filter to
smooth the stress computation. The authors found that a filter
length of 50 yields good results. However, this requires at least
50 iterations for early termination. Our algorithm might start with
an initial configuration that is very close to the optimization target.
Therefore, Progressive Glimmer should be able to terminate earlier.
We achieve this by shortening the filter to only require 10 iterations.
If more iterations are required, the filter length is increased in steps
of 10 until the original filter is obtained again. To limit the latency
between rendered results, the maximum number of iterations z can
be set to a user-defined value. For smaller progression steps, it is
possible to visualize the output not only after processing a chunk of
data but after a set of iterations.

4 EVALUATION

In the following, we evaluate our approach with respect to stress
and timing. As a reference, we use the original Glimmer algorithm
applied to the subset of data. At first, we investigate the runtime
shown in Figure 2a for the different runs of the algorithm on the
spatio-temporal dataset discussed in Section 5. To obtain the op-
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Figure 2: Runtime and stability of Glimmer and Progressive Glimmer. The computation time is substantially faster for progressive Glimmer (a),
where the indicated times are for one step of progressive Glimmer. The stress over the number of included dimensions (b) reveals a sensitivity
to the initial condition but also rapid improvements confirmed in the Shephard diagrams (c).

Figure 3: Comparing stress of Glimmer and Progressive Glimmer for
different overlaps of a random data set. The data points of Glimmer
are connected for better interpretability but are computed indepen-
dently.

timal result, the computation time is not limited by the number of
iterations for this figure. While we observe several outliers, the
mean runtime for Progressive Glimmer is substanitally smaller. The
quality of Progressive Glimmer strongly depends on the embedding
quality in the previous step. However, we observe an instability in
this regard also in the original Glimmer algorithm. In Figure 2b,
we show the change in stress over the different progressive steps.
Here, the initial Glimmer application creates a relatively poor re-
sult as can also be seen in the Shepard diagram in Figure 2c. While
the result of Progressive Glimmer in the first step could be substan-
tially smaller, as shown by the stress value computed for the orig-
inal Glimmer algorithm, the quality improves over the progressive
steps. In this example, the stress values of Progressive Glimmer are
already smaller than those of Glimmer after three steps. It is note-
worthy that the stress decreases further and stays low consistently.
The quality improvement can also be seen in the Shepard diagrams
in Figure 2c. While these observations indicate a sensitivity to the
initial conditions, they also show that a high-quality initial embed-
ding is not required for good results after several progressive steps
of the algorithm.

For each progressive step, we add a certain amount of new di-
mensions. To investigate the influence of the amount of newly
added dimensions, we study the output quality based on the per-
centage of changed dimensions. Note that here we do not add new
dimensions but move the data windows, which means that we re-
move the same number of dimensions that we add. While this is
closer to a streaming paradigm than a progressive visualization, it
provides clearly controlled results up to the point where the entire
data is disjoint. The results are shown in Figure 3. For this eval-
uation, we used random data with 10,000 points because the com-
plete lack of relation between the individual dimensions forms the
worst case for our algorithm. Here, we identify that changing more

than 20% of the dimensions leads to a decrease in quality. How-
ever, note that especially spatio-temporal data, where time steps are
used as dimension, contains smooth variations in time. This leads
to smaller changes in the distances, and larger percentages of new
dimensions can also lead to reasonably good results. Thus, the re-
sults of Figure 3 present the worst case. While the worst-case is
unlikely, it provides a lower bound for the amount of data that can
be safely added.

5 USAGE SCENARIOS

In the following, we will show the applicability of our approach
based on a real-world dataset. We use the Max Planck Institute for
Meteorology Grand Ensemble Simulations dataset (MPI-GE) [10]
(available at https://esgfdata.dkrz.de/projects/mpi-ge/). In this pa-
per, we use the temperature variations in the RCP8.5 scenario,
which covers in total the time span from 2006 to 2100. With a
spatial resolution of 96×192, we obtain 18,432 sample points that
should be embedded. Applying dimensionality reduction to spatio-
temporal data, where each point in the low-dimensional embedding
corresponds to a spatial data point and the time steps are used as
dimensions, allows for identifying regions with similar temporal
behavior [7, 6]. First, we show the application to time-varying data,
based on which we compare the effects of dealing with the dimen-
sions in temporal order or using random access on the data. Second,
we present an application to ensemble data. For this case, we use
a similar concatenation of ensemble members as presented by Ev-
ers et al. [7] for the correlation computation. This usage scenario
provides insights into adding larger chunks of data.

Temporal Data. As a first usage scenario, we investigate a
progressive MDS computation and visualization for temporal data.
Here, we consider the first 10 years of the MPI-GE dataset, which
corresponds to 120 timesteps, and use each time step as a dimen-
sion. We limit the computation time for each step by setting a
threshold of 100 iterations as a maximum. The results are shown in
Figure 4. Within this usage scenario, we also want to investigate the
influence of the order in which the dimensions are added. There-
fore, we compare adding individual dimensions in temporal order
to adding the time steps in random order.

The evolution of the stress when compared to the entire high-
dimensional dataset is very similar for both cases (see Figure 4a).
In particular, in both cases, we observe a clear decrease indicat-
ing a convergence toward a result that would be obtained non-
progressively. More interestingly, it is not clear which progression
technique yields lower stress for intermediate results. Investigat-
ing the scatterplots reveals that the initial 2D embeddings, which
are created by using the first two chosen dimensions as axes, show
the largest differences between choosing a random order (see Fig-
ure 4b) and the temporal order of the time steps (see Figure 4c).
When investigating the progression and the decrease in normalized
stress, we see a constant decrease in stress that indicates that early



Figure 4: Progressive visualization for temporal data of one ensemble member of the MPI-GE dataset. The evolution of stress (a) does not show
substantial differences between using temporal or random order when adding the time steps. The scatterplots for different numbers of time steps
N show that the variations for randomly adding dimensions (b) are small. When adding the steps in temporal order (c), the shape between the
first two examples shown here varies substantially, while the following results are more similar.

Figure 5: When adding the data in chunks of 1128 time steps (one
ensemble member), more iterations are required to obtain smaller
stress values (a). The result for five ensemble members for a maxi-
mum of 100 iterations (b) and a maximum of 500 iterations (c) show
structural differences.

stopping is not feasible without a loss in accuracy. However, the
relative positions of the points remain stable, and mainly the scale
of the point cloud changes for later progression steps. Thus, early
termination can be feasible if primarily the shape of the embedding
is of interest.

Ensemble Data. In the following, we investigate the applica-
tion to ensemble data, where one data chunk corresponds to one en-
semble member with 1128 time steps and, thus, 1128 dimensions.
The results for five ensemble members are shown in Figure 5. For
this case, we observe that limiting the maximum number of itera-
tions to z = 100 yields worse results than applying the algorithm
directly. This observation can be explained by the relatively large
changes in the distances and the low number of iterations to adapt.
Relaxing the latency constraints and allowing for z = 500 iterations

for each data chunk substantially improves the result, as can also be
seen in Figure 5b and c. For this case, even the computation using
the original Glimmer algorithm is outperformed. Note that even for
the larger number of iterations per data chunk, the latency can be
limited further by rendering intermediate results after a user-defined
number of iterations in the force-based optimization.

6 DISCUSSION AND CONCLUSION

In this paper, we presented Progressive Glimmer, which allows for
computing MDS embeddings by progressively adding additional
dimensions. While the algorithm can be applied to a wide variety
of datasets, we see the main usage scenario in identifying features
of spatio-temporal simulation data. We present evaluations regard-
ing runtime and embedding quality measured by stress, as well as a
usage scenario on a climate change dataset. In the taxonomy for
progressive visualization [15], Progressive Glimmer applies data
chunking and limits the latency by limiting the number of itera-
tions per chunk of data. If even smaller update times are required,
the intermediate results between the iterations of the force-based
optimization algorithm can also be shown.

In this work, we used a CPU implementation. However, as Glim-
mer was designed to be executed on the GPU, we plan to incor-
porate the progressive computations in a GPU version, which can
further improve runtime. In the future, we plan to evaluate the al-
gorithm in more detail to optimize different hyper-parameters such
as the number of neighbors and the convergence criterion for which
we now mostly use the default values presented by Ingram et al. [8].
One key point in progressive data visualization is the estimation of
the quality. A common quality measure for MDS embeddings is
the normalized stress. While the stress of the entire dataset pro-
vides very valuable quality insights, it is computationally expen-
sive. Here, we plan to investigate the quality of different approx-
imations that provide upper bounds also without the requirement
to process the entire data. We plan to explore different applica-
tions such as the progressive computation of similarity images [7].
Based on the design of the algorithm, it can also be applied easily
to streaming data and in the context of in-situ visualization. For ex-
ample, the approach could be applied when calculating expensive
numerical simulations to visualize intermediate results. Including
steering options could lead to time savings in the data analysis pro-
cess. In the future, we also plan to investigate the applicability in
areas where consistent algorithms are required, such as for the com-
putation of temporal MDS [9].
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